Optical sensor seismic monitoring system

Pressure vessel Underground setti type sensor 60φ×600mn Surface setting type sensor 120 × 150 × 90mm

Accelerometer	
Sensor type	Optical interference accelerometer
Detection direction	2 horizontal directions, 1 vertical direction
Sensor characteristics	Resonance frequency
	100Hz±4Hz, 30Hz±3Hz
Damping coefficient	0.7±0.2, 0.7±0.2
Measurement range	More than ±8G, More than ±2G
Operating temperature	Standard 85°C
	For high temperature 150°C
Operating pressure	Depends on the individual housing design

Optical transmitter / receiver		
A laser wavelength	1550nm	
Measurement time	15ns or 30ns / sample	
Measurement cycle	1uS±0.01uS	
Laser output level	More than +7dBm	
Number of connectable sensors	Up to 20 sets for a 3-component sensors, 60 for individual sensors	
Sampling frequency	100Hz or 200Hz	
Resolution	0.12mGal (100Hz sensor) 0.011mGal (30Hz sensor)	
Time synchronization method	GPS or NTP	
Recording method	Continuous recording / Triggered recording	
Measurement Output	Maximum acceleration, instrumental seismic intensity, SI value	
Data format	win format	
Recoding media	2TB HDD Constitution	

Fiber o Optical fiber Single mode fiber Standard 85°C Operating Temperature For high temperature 200°C

Seismic monitoring system for harsh environment (No semiconductor devices in sensors)

* Specification and design specified in this catalogue are subjected to change without notice.

* The content of this catalogue is as of April, 2023.

Contact

Tokyo Power Technology Ltd.

5-5-13 Toyosu, Koto-ku, Tokyo 135-0061, Japan Phone: +81-3-6372-7000 E-mail: support@tepico.jp URL: https://www.tokyo-pt.co.jp/

HAKUSAN CORPORATION

KDX Fuchu Building 8F, 1-40, Miyamachi, Fuchu-shi, Tokyo 183-0023, JAPAN Phone: +81-42-333-0080 E-mail: support@hakusan.co.jp URL: https://www.hakusan.co.jp/

Seismic observation in harsh environments

Features

The phase-shifted optical interferometry enables highly accurate* seismic observation without power supply to the sensor.

- No power supply or electronic components required (from the fiber optic cable to the sensor)
- High temperature resistance, high pressure resistance, lightning resistance, explosion proof, radiation resistance
- Long-distance / wide-range observation
- Long-term stable operation in the field
- Shortening the construction period and reducing costs

*In a comparison of microtremor observation conducted in a quiet place, the same high sensitivity and low noise as the electric broadband seismometer were confirmed.

Phase-shifted optical interferometry

Optical interferometer can measure a very small distance change. However usual interferometer has only a half (1/2)wavelength of measurement range. Our patented phase shifted optical interferometer extends the range of up to thousands of wavelengths.

[Related Patents]

Patent number 5118004: Optical fiber sensor Patent number 5118246(U.S. patent number 9273948); Optical fiber sensor Patent number 5702623: Optical fiber sensor

. (The phase of the reference light is shifted by π / 2.) Patent number 6002329: Optical interference sensor and observation system

Observation results

Observation example of a small earthquake

Noise spectra of an optical sensor seismic observation system, a servo accelerometer, and a broadband seismometer observed at the Tono Yamazaki Observatory of Tohoku University in Japan

As the broadband seismometer is a velocity seismometer, the record of the broadband seismometer is differentiated and converted to acceleration. The optical sensor seismic observation system observes the ground motion of the observation tunnel from 0.1Hz to 30Hz, similar to the broadband seismograph. The noise level of the servo accelerometer is higher than that of the optical sensor seismic observation system and the broadband seismometer.

Waveform of the vertical component of the earthquake observed by the optical sensor system at the Tono Yamazaki Observation Tunnel of Tohoku University around 0:16 am on December 18, 2019

The waveform with the maximum amplitude of 0.02 Gal is clearly captured